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Self-consistent formulae for treating the �-polarization waves in two-beam

X-ray diffraction from single crystals are re®ned within the Laue formalism.

These formulae overcome the r � D 6� 0 problem and avoid all the unnecessary

approximations in previous dynamical theories. Therefore, they are as accurate

as the formulae for �-polarization waves.

1. Introduction

The extended dynamical theory of two-beam X-ray diffraction

developed in the literature is almost rigorous for � polarization

except for some unavoidable approximations (e.g. De Caro et al.,

1997). For the � polarization, however, a well known approximation

commonly adopted is that the polarization factor C, the cosine of the

`internal scattering angle', is assumed to be constant, equal to cos 2�B

(�B the Bragg angle), which is unjusti®ed at the far tails of the

diffraction maximum. Huang & Dudley (2003, hereafter referred to

as paper I) recently improved this approximation by taking into

account the variation of C with varying incidence direction. However,

the mathematical treatments are still not `perfect', as illustrated in the

following.

Consider the coplanar Bragg case in Fig. 1, where the xy and xz

planes are the crystal surface and the plane of incidence, respectively.

Above the surface exist the incident wave EI exp�ÿiK0 � r�, the

diffracted wave ED exp�ÿiKh � r� and the specularly re¯ected wave

ER exp�ÿiKR � r� [all with a common time dependence exp�i!t�]. The

magnitudes of K0, Kh and KR are all equal to K � 2�=� (� is the

wavelength). For each wave®eld D0 exp�ÿik0 � r� �Dh exp�ÿikh � r�
inside the crystal, the two wavevectors are (see paper I)

k0 � K0 � K�ẑ � k0xx̂� k0zẑ; �1�
kh � K0 � h� K�ẑ � khxx̂� khzẑ; �2�

where x̂, ŷ and ẑ are unit vectors along the x, y and z axes, respectively,

and � � �r � i�i (with �r and �i being real) is a small complex variable

that can be solved from the dispersion equation. The complex �
makes k0z and khz also complex (while k0x and khx are real). Hence, k0

and kh become complex vectors (Born & Wolf, 1999). For instance, k0

has the form k0 � k0r � ik0iẑ, where k0i � K�i and k0r � K0 � K�rẑ.

Generally, k0r is not parallel to ẑ.

Note that here a complex vector is de®ned to have the form

v � v1ê1 � v2ê2, where ê1 and ê2 are two different unit vectors while

v1 � jv1j exp�i�1� and v2 � jv2j exp�i�2� are two complex quantities

with different phases �1 and �2. Such a vector may also be written

as v � vr � ivi with vr � Re�v1�ê1 � Re�v2�ê2 and vi � Im�v1�ê1�
Im�v2�ê2 being the real and imaginary components. In contrast, a

single vector has the form u � uê, where ê is a unit vector and u is a

real or complex value, called the scalar value of u. When u is resolved

into two or more components, all the components always have the

same phase.

In the literature, the amplitude D0 of any internal primary wave

was assumed to be a single vector, i.e. it can be written as D0ê0 with ê0

being a unit vector. For the � polarization, since k0 lies within the xz

plane while ê0 � ŷ is perpendicular to this plane, we always have

r �D0 � ÿik0 �D0 � 0, which is the basic requirement used to derive

Laue's wave equations (no free charge exists). For � polarization,

however, ê0 also lies within the xz plane. Thus, we have

k0 �D0 � D0�k0r � ik0iẑ� � ê0 6� 0 unless k0r k ẑ and ê0 ? ẑ (normal

incidence). Clearly, the internal diffracted waves have the same

problem. Therefore, the previous dynamical theory for � polarization

is not self-consistent (at least mathematically).

The other problem for �-polarization waves is that the `internal

scattering angle' between k0 and kh is not strictly de®ned as each

complex vector consists of two different vectors. In paper I, the cosine

of this `angle' was treated as C � �k0 � kh�=k0kh with k0 and kh being

the `scalar values' of k0 and kh, respectively. However, the `scalar

value' of a complex vector is not unambiguously de®ned, either (but

k2
m � km � km is well de®ned). Although an intuitive treatment might

be km � ��km � km�1=2 (for m � 0; h), the physical meaning of such a

representation is not clear. Meanwhile, there is no criterion about

how to choose the sign. Detailed discussions about complex vector

algebra is out of the scope of this paper. Instead, we will demonstrate

in the following that the �-polarization waves can be naturally and

rigorously formulated without breaking the r �D � 0 condition or

using the `internal scattering angle'.

2. Theory

Let us write the internal wave amplitudes as D0 �
D0xx̂�D0yŷ�D0zẑ and Dh � Dhxx̂�Dhyŷ�Dhzẑ. The ®rst

Figure 1
Coplanar Bragg-case X-ray diffraction geometry. The D and E vectors are for �
polarization. D0, Dh, k0 and kh are complex vectors.
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restriction for D0 and Dh is that they must be transverse, i.e.

k0 �D0 � 0 and kh �Dh � 0. As a result, we have

D0z � ÿk0xD0x=k0z; Dhz � ÿkhxDhx=khz: �3�
Here, since kmz (m � 0 or h) is complex, the phases of Dmx and Dmz

are different. Thus, Dm is also a complex vector, which indicates that

the wave Dm exp�ÿikm � r� of � polarization is not strictly a plane

wave. The physical meaning of the complex amplitude vector is that

both the direction and magnitude of this vector change periodically

with time t in real space, i.e. Dm�t� � jDmxj cos�!t�x̂�
jDmzj cos�!t � �m�ẑ, where �m is the phase difference between Dmz

and Dmx and ! is the circular frequency of the wave. This is similar to

an elliptical wave except that the polarization plane is parallel to the

wavevector.

The other restriction for D0 and Dh is that they must satisfy Laue's

wave equations

&0D0 � �hDh�0�; �4�
&hDh � �hD0�h�; �5�

where

&0 � �p ÿ K2=k2
0; &h � �p ÿ K2=k2

h; �6�
and �p � 1ÿ �0. Equations (4) and (5) are based on the fact that the

susceptibility � is very small so that 1=�1ÿ �� ' 1� � (which could

be invalid for soft X-ray diffraction). Meanwhile, the possible

contributions from other re¯ections are ignored (HolyÂ & Fewster,

2003). Currently, we are unable to avoid these approximations.

The exact de®nitions of Dh�0� and D0�h� are

Dh�0� � Dh ÿ �Dh � k0�k0=k2
0

� Dhyŷ� �k0zDhx ÿ k0xDhz��k0zx̂ÿ k0xẑ�=k2
0; �7�

D0�h� � D0 ÿ �D0 � kh�kh=k2
h

� D0yŷ� �khzD0x ÿ khxD0z��khzx̂ÿ khxẑ�=k2
h: �8�

Based on these two equations, the scalar forms of (4) and (5) along

the y axis are

&0D0y ÿ �hDhy � 0; �hD0y ÿ &hDhy � 0; �9�
respectively. These two equations correspond to the �-polarization

con®guration. Since this case has been accurately treated in paper I,

we skip the related discussions here.

Based on (7), the scalar forms of (4) along the x and z axes are

&0D0x ÿ �hk0z�k0zDhx ÿ k0xDhz�=k2
0 � 0;

&0D0z � �hk0x�k0zDhx ÿ k0xDhz�=k2
0 � 0;

�10�

respectively. Eliminating D0z and Dhz using (3), one can ®nd that

these two equations are identical and may be written as

&0D0x ÿ �hk0z�k0 � kh�Dhx=�k2
0khz� � 0: �11�

Similarly, the scalar forms of (5) along x and z are also identical:

�hkhz�k0 � kh�D0x=�k2
hk0z� ÿ &hDhx � 0: �12�

Equations (11) and (12) are the two wave equations for � polariza-

tion, from which the dispersion equation is then, also by (6),

�k2
0�p ÿ K2��k2

h�p ÿ K2� � �h�h�k0 � kh�2: �13�
This equation is identical to the dispersion equation (3) in paper I

under C2 � �k0 � kh�2=�k2
0k2

h�. Here we have explicitly proved it. As a

consequence, we may use the same procedure as that used in paper I

to convert (13) into a quartic equation in terms of �:

�4 � A�
1 �

3 � A�
2 �

2 � A�
3 �� A�

4 � 0: �14�

The four coef®cients in (14) have been de®ned in equations (11) of

paper I,1 where it has also been illustrated how the four roots �j

(j � 1; 2; 3; 4) of (14) may be solved using simple complex arithmetic.

After each �j is solved, the k0j and khj and their components can be

calculated from (1) and (2). Meanwhile, the corresponding k2
mj

[� k2
mjx � k2

mjz] and &mj can also be obtained (m � 0; h). From (12),

the ratio between Dhjx and D0jx is then

rj �
Dhjx

D0jx

� �hkhjz

&hjk
2
hj

khjz �
k0jxkhjx

k0jz

 !
: �15�

The strengths of the four wave®elds are determined by the boundary

conditions: the continuity of the tangential components of the E and

H ®elds across the crystal surface (or interfaces). From the relation

E ' �1ÿ ��D (in c.g.s. units), one may convert the tangential

components of the internal D waves into E-wave components using

E0jx � ��p ÿ rj�h�D0jx � pjD0jx;

Ehjx � �rj�p ÿ �h�D0jx � qjD0jx;
�16�

for j � 1; 2. In vacuum, D � E. Therefore, we have EIx � 0EI,

ERx � ÿ0ER and EDx � hED with 0 � K0z=K � sin � and

h � Khz=K � ÿ�K2 ÿ �K0x � hx�2�1=2=K. For a plane wave

D � D0 exp�i�!t ÿ k � r��, Maxwell's equations cr �H � @D=@t and

r �H � 0 lead to H � �K=k2��k�D�. Based on this principle and

equations (3) and (15), the tangential components of the internal H

®elds are

H0jy � D0jxK=k0jz � ujD0jx;

Hhjy � rjD0jxK=khjz � vjD0jx:
�17�

According to Fig. 1, the H ®elds of the external waves are all parallel

to the y axis with HIy � EI , HRy � ER and HDy � ED.

In the above treatments, one can see that explicit use of the

`internal scattering angle' (as well as the polarization factor) is

completely avoided, and it is no longer necessary to calculate the

`scalar value' of any complex vector involved. Meanwhile, all the D

waves inside the crystal satisfy r �D � 0.

3. Discussion and conclusions

Our numerical computations show slight differences between the

rocking curves calculated with the current method and that in paper I

for the � polarization. The similarity originates from the fact that the

imaginary parts of the internal wavevectors are actually quite small.

However, for the far tails of the rocking curve, the simulated intensity

pro®le shows signi®cant differences from that computed by assuming

a constant polarization factor C � cos 2�B. As an example, let us

consider �-polarization Bragg diffraction from a multilayer structure

consisting of N layers on a substrate. Suppose that the multilayers are

stacked above the xz plane in Fig. 1 along ÿz. Then the diffraction

pattern may be calculated with the 4 � 4 matrix equation

~Dv � S
�N�
U �S�N�L �ÿ1S

�Nÿ1�
U �S�Nÿ1�

L �ÿ1 . . . S
�1�
U �S�1�L �ÿ1 ~D0; �18�

where the superscripts (n) are the indices of the epilayers starting

from 1 to N along ÿz (0 for the substrate). The matrices in (18) are

de®ned as

1 Note that the correct expression for A�
3 is A0A�

3 � 2�2
p�0��� 1� � 'h� ÿ

A�
1 ��p � �h�h��.



S
�n�
U;L �

p
�n�
1 wU;L

1;n p
�n�
2 wU;L

2;n p
�n�
3 wU;L

3;n p
�n�
4 wU;L

4;n

q
�n�
1 wU;L

1;n q
�n�
2 wU;L

2;n q
�n�
3 wU;L

3;n q
�n�
4 wU;L

4;n

u
�n�
1 wU;L

1;n u
�n�
2 wU;L

2;n u
�n�
3 wU;L

3;n u
�n�
4 wU;L

4;n

v
�n�
1 wU;L

1;n v
�n�
2 wU;L

2;n v
�n�
3 wU;L

3;n v
�n�
4 wU;L

4;n

0BBB@
1CCCA; �19�

where wU;L
j;n � exp�iK��n�j zU;L

n �, zL
n � ÿ

Pnÿ1
m�1 tm and zU

n � zL
n ÿ tn are

the positions of the lower and upper interfaces of the nth layer,

respectively (zL
1 � 0), and tm is the thickness of the mth layer. ~Dv and

~D0 in (18) are two column vectors (for EI � 1):

~Dv �
0�1ÿ ER�
h�DED

1� ER

�DED

0BB@
1CCA; ~D0 �

p
�0�
1 D

�0�
01x � p

�0�
2 D

�0�
02x

q
�0�
1 D

�0�
01x � q

�0�
2 D

�0�
02x

u
�0�
1 D

�0�
01x � u

�0�
2 D

�0�
02x

v
�0�
1 D

�0�
01x � v

�0�
2 D

�0�
02x

0BB@
1CCA; �20�

where �D � exp�iK�0 ÿ h�zN � and D
�0�
01x and D

�0�
02x are associated

with the two valid wave®elds in the substrate. ER, ED, D
�0�
01x and D

�0�
02x

can be solved from the four linear equations in (18) for any incidence

angle �. Note that for grazing-incidence geometry the recursion-

matrix method might be needed [see Stepanov et al. (1998) and

references therein].

Fig. 2 shows the rocking curves simulated for a 20-period

AlAs (154 AÊ )/GaAs (73 AÊ ) superlattice on a (001) GaAs substrate

(Stepanov et al., 1998). The solid-line pattern was simulated using the

above 4 � 4 transfer-matrix method (4F) while the dashed one was

computed using the conventional 2 � 2 transfer-matrix method (2F)

(upon which most commercial software is based). Apparently, only

when the incidence angle falls within the range j��j< 100000 (� 0:3�)
around the Bragg angle of the substrate do the two patterns coincide

very well (Fig. 2a). Out of this range, the displacement of the dashed

pattern tends to be signi®cant with increasing j��j (Fig. 2b). In wide

angular ranges, the discrepancy caused by the 2F method is intoler-

able. Here the 4F method nicely solved this problem. It should be

noted that in the 4F method the �-polarization superlattice peaks still

exactly coincide with the �-polarization peaks (not shown here) over

the entire angular range. However, the former peaks are generally

one order lower than the latter ones although the substrate peak

heights for the two polarization states are very close to each other.

This phenomenon does not mean that the �-polarization contribution

could be ignored in simulations of superlattice (or multilayer)

diffraction rocking curves for unpolarized laboratory X-ray sources.

Instead, the (weighted) average of both contributions must be used to

give accurate simulations.

In summary, we have derived simple but rigorous formulae for

treating the �-polarization waves in the two-beam X-ray diffraction

process. This model is mathematically self-consistent and is as accu-

rate as the existing extended dynamical theory for �-polarization

waves. Similar extensions can also be developed for multiple-beam

diffraction although the computations might be expensive.
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Figure 2
Simulated rocking curves for a pseudomorphic AlAs/GaAs superlattice, vertical
lattice constant ratio assumed to be aAlAs=aGaAs � 1:002775. Symmetric 004
re¯ection, � polarization, Cu K�1 radiation.


